翻訳と辞書 |
Segment addition postulate : ウィキペディア英語版 | Segment addition postulate In geometry, the segment addition postulate states that given two points A and C, a third point B lies on the line segment AC if and only if the distances between the points satisfy the equation AB + BC = AC. This is related to the triangle inequality, which states that AB + BC AC with equality if and only if A, B, and C are collinear (on the same line). This in turn is equivalent to the proposition that the shortest distance between two points lies on a straight line. The segment addition postulate is often useful in proving results on the congruence of segments. ==External links==
* http://www.course-notes.org/Geometry/Segments_and_Rays/Segment_Addition_Postulate
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Segment addition postulate」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|